
Deobfuscation and beyond

Vasily Bukasov

and

Dmitry Schelkunov

https://re-crypt.com

https://re-crypt.com/
https://re-crypt.com/
https://re-crypt.com/

Agenda

• We'll speak about obfuscation
techniques which commercial (and not
only) obfuscators use and how symbolic
equation systems could help to
deobfuscate such transformations

• We'll form the requirements for these
systems

• We'll briefly skim over design of our mini-
symbolic equation system and show the
results of deobfuscation (and not only)
using it

Software obfuscation

Is used for software

protection against

computer piracy

Is used for malware

protection against

signature-based and

heuristic-based

antiviruses

Common obfuscation techniques

Common obfuscation techniques

Recursive substitution

Common obfuscation techniques

Common obfuscation techniques

Code duplication

Common obfuscation techniques

Code duplication in

virtualization obfuscators

Previous researches and products

• The Case for Semantics-Based Methods in Reverse Engineering, Rolf
Rolles, RECON 2012

• Software deobfuscation methods: analysis and implementation, Sh.F.
Kurmangaleev, K.Y. Dolgorukova, V.V. Savchenko, A.R. Nurmukhametov,
H. A Matevosyan, V.P. Korchagin, Proceedings of the Institute for
System Programming of RAS, volume 24, 2013

• CodeDoctor

– deobfuscates simple expressions
– plugin for OllyDbg and IDA Pro

Previous researches and products

• VMSweeper
– declares deobfuscation (devirtualization) of Code
Virtualizer/CISC and VMProtect (works well on about 30% of
virtualized samples)
– not a generic tool (heavily relies on templates)
– works as a decompiler not optimizer
– weak symbolic equation system

• CodeUnvirtualizer
– declares deobfuscation (devirtualization) of Code
Virtualizer/CISC/RISC and Themida new VMs
– not a generic tool (heavily relies on templates)
– no symbolic equation system

Previous researches and products

• Ariadne
– complex toolset for deobfuscation and data flow analysis
– includes a lot of optimization algorithms from compiler theory
– no symbolic equation system
– it seems to be dead 

• LLVM forks
– are based on LLVM optimization algorithms (classical compiler
theory algorithms)
– we couldn’t find any decently working version
– are limited by LLVM architecture (How fast LLVM works with 500
000 IR instructions? How much system resources it requires?)

The problem

Existing deobfuscation solutions are mostly

based on classical compiler theory algorithms

and too weak against modern obfuscators in the

most of cases

Solution

• Use symbolic equation system (SES) for
deobfuscation
• Form input data for SES (translate source IR
code to SES representation)
• Simplify expressions using SES
• Translate results from SES representation to
IR
• Apply other deobfuscation transformations

Symbolic equation system

Symbolic equation system

Symbolic equation system

Symbolic equation system

Symbolic equation system

Symbolic equation system

Unfortunately, we couldn’t find an

appropriate third-party symbolic equation

system engine and … we decided to create

a new one for ourselves.

We called it Project Eq.

Eq design

eax.1 = ((eax.0 * 0xffffffff) + 0xffffffff) ^ 0xffffffff

Eq design

eax.1 = ((eax.0 * 0xffffffff) + 0xffffffff) ^ 0xffffffff

Eq design

eax.1 = ((eax.0 * 0xffffffff) + 0xffffffff) ^ 0xffffffff

Eq design

eax.1 = ((eax.0 * 0xffffffff) + 0xffffffff) ^ 0xffffffff

Eq design

eax.1 = ((eax.0 * 0xffffffff) + 0xffffffff) ^ 0xffffffff

Eq design

eax.1 = ((eax.0 * 0xffffffff) + 0xffffffff) ^ 0xffffffff

Eq design

eax.1 = ((eax.0 * 0xffffffff) + 0xffffffff) ^ 0xffffffff

Eq design

eax.1 = ((eax.0 * 0xffffffff) + 0xffffffff) ^ 0xffffffff

eax.0 (v)

eax.1 = eax.0

Profit! J

Eq design

Eq in work

union rebx_type
{

UINT32 rebx;
WORD rbx;
BYTE rblow[2];

};

void vmp_constant_playing(rebx_type &rebx)
{

BYTE var0;
union var1_type
{

UINT32 var;
WORD var_med;
BYTE var_low;

} var1;

var0 = rebx.rblow[0];
rebx.rblow[0] = 0xe7;
var1.var_med = rebx.rbx;
var1.var_low = 0x18;
rebx.rbx = var1.var_med;
rebx.rblow[0] = var0;

}

A C++ sample of

obfuscated code.

It was borrowed J

from VMProtect

Eq in work

Eq in work

Profit! J

Eq in work

void rustock_sample(UINT32 &rebp, UINT32 &redi, UINT32 &resi)
{

UINT32 var0, var1, var2;

var0 = rebp;
rebp = redi | rebp;
var1 = redi & var0;
resi = ~var1;
var2 = rebp & resi;
redi = var0 ^ var2;

}

A C++ sample of

obfuscated code.

It was borrowed J

from Rustock

Eq in work

Eq in work

Profit! J

Deobfuscation with Eq

Deobfuscation with Eq

After code virtualization

Deobfuscation with Eq

Deobfuscation with Eq

• ASProtect
• CodeVirtualizer/Themida/WinLicense

– old CISC/RISC
– new Fish/Tiger

• ExeCryptor
• NoobyProtect/SafeEngine
• Tages
• VMProtect
• Some others…

Were deobfuscated successfully J

Deobfuscation with Eq
Some numbers

Instructions initially ~100

Instructions after obfuscation ~300 000

Instructions after deobfuscation ~200

Code generation time ~4 min

Code deobfuscation time ~2 min

Memory ~300 Mb

Obfuscation with Eq

We could use optimization not for

deobfuscation only.

What if we could stop optimization

process at random step?

Obfuscation with Eq

Obfuscation with Eq

Obfuscation with Eq

Obfuscation with Eq

• Easy to implement

• Hard to deobfuscate using classical

compiler theory optimization algorithms

• Hard to deobfuscate using reverse

recursive substitution

• No templates and signatures in the

obfuscated code

Obfuscation with Eq

But this tricky obfuscation is still weak.

It’s possible to deobfuscate these expressions using Eq

project or another symbolic equation system.

And we have to go deeper!

Obfuscation with Eq

Obfuscation with Eq

Profit! J

Perspectives

• Obfuscation becomes stronger

– Complex mathematical expressions are

used more frequently

– Merges with cryptography

• Obfuscation migrates to dark side

– Protectors are dying

– Malware market is growing

Perspectives

• Obfuscation becomes undetectable

– Mimicry methods are improved

– Obfuscators try to avoid method of

recursive substitutions

– Obfuscators use well-known high-level

platforms

• LLVM becomes a generic platform for

creating obfuscators

Questions

?

